## Validation of Thermal Processes Against *Salmonella* spp. and the Effects of Matrix on Lethality

## Mary L. Bandu, Ph.D.

Director of Technical Services Research and Chemistry Chestnut Labs





# Current Regulation – Food Safety Modernization Act (FSMA)

 October 25, 2013 – The FDA issued a proposed rule under the FDA Food Safety Modernization Act (FSMA) aimed at improving the safety of food for animals. This proposed regulation would help prevent foodborne illness in both animals and people and is open for public comments for 120 days.



**Petfood**Industry

 January 31, 2014 – Comments may be submitted until March 31, 2014.



http://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm372128.htm http://www.fda.gov/Food/NewsEvents/ConstituentUpdates/ucm383490.htm



## FSMA

- Primary focus is on prevention of food safety incidences
- Hazards to food safety should be identified
  - Microbiological
  - Chemical
  - Physical
  - Radiological
- Preventative Controls should be implemented
- Controls should be validated to ensure hazards will be minimized

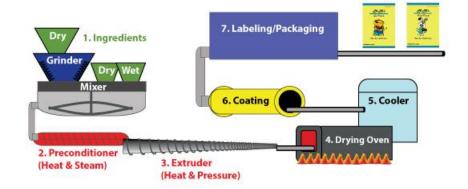


## Microbial Hazard for Pet Food – Salmonella spp.

#### Examples of "Salmonella-sensitive" ingredients used in low-moisture products\*

- Chocolate, chocolate liquor, cocoa powder, chocolate chips, cocoa products
- Nuts/nut products
- Coconuts
- Seeds/seed products
- Grains/grain products (excluding starches)
- Dried egg products
- Fruits/fruit products
- Dairy ingredients and blends
- Spices/herbs (excluding extracts), blended seasonings
- Soy products
- Gums/thickeners (excluding xanthan gum)
- Yeast/yeast extract
- Gelatin
- Dry vegetables
- Enzymes/rennets
- Dry meat or meat byproducts \*This list is not inclusive of all sensitive ingredients.




http://www.gmaonline.org/downloads/technical-guidance-and-tools/SalmonellaControlGuidance.pdf http://www.zimbio.com/Nanotechnology/articles/b5ScwnCzb1C/Rapid+test+for+Salmonella





## **Preventative Controls**

- Extrusion and baking conditions are lethal to Salmonella spp.
  - Heat
  - Steam
  - Pressure
  - Drying





http://www.petfoodinstitute.org/?page=DryPetFood



## Validation of Preventative Controls

- Under the proposed rule (507.45), validation of preventative controls is required to ensure control of the hazards identified
  - Validation through experiments
  - Validation through documentation





## Validation - Lab Experiments

- The matrix of interest is prepared in the lab
- The matrix is inoculated with high levels of the pathogen of concern
- The matrix is processed using manufacturing conditions
- After processing, final organism counts are compared to initial counts to determine the overall log<sub>10</sub> reduction of organism



http://www.fsis.usda.gov/wps/wcm/connect/3b52f9c0-0585-4c0aabf2b4fc89a9668c/NACMCF\_Inoculated\_Pack\_2009F.pdf?MOD=AJPERES



## Validation – In Plant Experiments

- A suitable non-pathogenic surrogate organism is identified
- The matrix of interest is prepared at the plant
- The matrix is inoculated with high levels of the surrogate
- The matrix is processed in the plant
- After processing, final organism counts are compared to initial counts to determine the overall log<sub>10</sub> reduction of organism



## Validation - Documentation

- FSMA states "The scientific and technical information ...may include scientific publications, government documents, predictive mathematical modes and other risk-based models, and technical information from equipment manufacturers, trade associations, and other sources."
- In addition, "the conditions used by the (manufacturing) facility are consistent with those described in the supporting literature."

- Temperature
- Heating Time
- Ingredient Matrix



## Current Investigation – Matrix Effects

- Pet treat formulation variations
  - Base formulation with low fat and high moisture
  - Base formulation with low fat and low moisture
  - Base formulation with high fat and low moisture





## Experimental Conditions – Dough Preparation

|                     | Pet Trea     | t Recipe |         |
|---------------------|--------------|----------|---------|
| Ingredient          | Low Moisture | High Fat | Base    |
| Flour               | 2 cups       | 2 cups   | 2 cups  |
| Meal (Porcine)      | 2/3 cup      | 2/3 cup  | 2/3 cup |
| Egg                 | 2 eggs       | 2 eggs   | 2 eggs  |
| Chicken Broth       |              |          | 1/2 cup |
| Oil                 | 3/4 cup      | 2 Tbsp   | 2 Tbsp  |
| Milk                |              |          | 1/4 cup |
| High Fat Shortening |              | 3/4 cup  |         |

- 50 grams of dough was formed for each treat
- Treats were formed in an oval mold with an approximate dimension of 3 in (length) X 2.65 in (width), and 0.5 in (depth)



http://www.dogtreatkitchen.com/dog-biscuit-recipe.html



## Experimental Conditions – Salmonella spp.

### Cocktail

| Salmonella enterica subsp. Enterica PT-30               | ATCC BAA- 1045 |
|---------------------------------------------------------|----------------|
| Salmonella enterica subsp. enterica serovar Tennessee   | ATCC 10722     |
| Salmonella enterica subsp. enterica serovar Senftenberg | ATCC 8400      |
| Salmonella enterica subsp. enterica serovar Enteritidis | ATCC 13076     |
| Salmonella enterica subsp. enterica serovar Typhimurium | ATCC 14028     |

• 2 mL of cocktail was added to bulk dough preparations

**Petfood**Industry

Final inoculum concentration was ~10<sup>7</sup> CFU/g



## Experimental Conditions – Thermal Processing

- Pet food was baked in a conventional oven at 220 °F
- Samples were pulled from the oven every 10 minutes for 40 minutes
- Triplicate samples were evaluated at each testing point

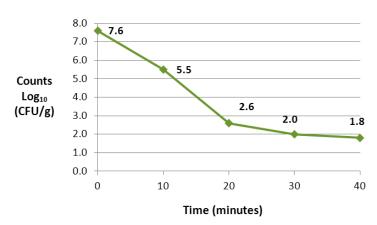




## Experimental Conditions – Sample Analysis

- 11 gram samples were diluted 1:10 in BPB
- Diluent was hand messaged for approximately 2 minutes
- Samples were plated onto Xylose Lysine Deoxycholate Agar (XLD)




**Petfood**Industry

 Plates were incubated at 35 °C for 24 – 48 hours

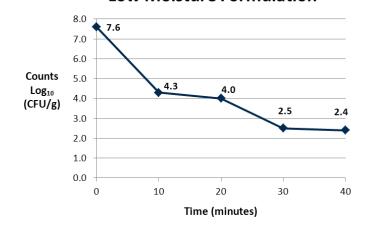


## **Results – Base Formulation**

#### High Moisture/Low Fat



| Ingredient          | <b>Base Formulation</b> |
|---------------------|-------------------------|
| Flour               | 2 cups                  |
| Meal (Porcine)      | 1/2 cup                 |
| Egg                 | 2 eggs                  |
| Chicken Broth       | 1/4 cup                 |
| Oil                 | 2 Tbls                  |
| Milk                | 1/2 cup                 |
| High Fat Shortening |                         |


#### **Base Formulation**

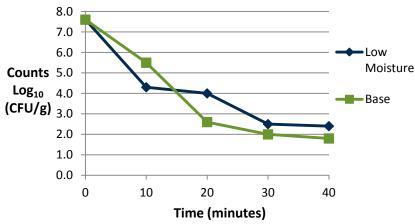
 Thermal processing resulted in a 5.8 log<sub>10</sub> reduction in Salmonella spp.



## **Results – Low Moisture Formulation**

#### Low Moisture/Low Fat




Low Moisture Formulation

# IngredientLow MoistureFlour2 cupsMeal (Porcine)1/2 cupEgg2 eggsChicken Broth0ilOil3/4 cupMilkHigh Fat Shortening

 Thermal processing resulted in a 5.2 log<sub>10</sub> reduction in Salmonella spp.



## Results - Low Moisture vs. Base Formulation



Petfood Forum

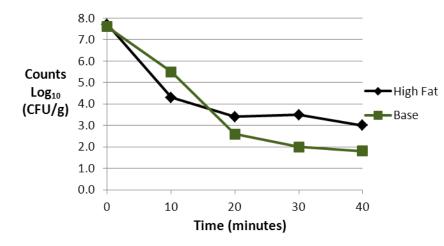
| Ingredient          | Low Moisture | Base    |
|---------------------|--------------|---------|
| Flour               | 2 cups       | 2 cups  |
| Meal (Porcine)      | 1/2 cup      | 1/2 cup |
| Egg                 | 2 eggs       | 2 eggs  |
| Chicken Broth       |              | 1/4 cup |
| Oil                 | 3/4 cup      | 2 Tbls  |
| Milk                |              | 1/2 cup |
| High Fat Shortening |              |         |

- The Low Moisture formulation had higher log<sub>10</sub> reduction earlier in the bake cycle (10 minutes)
- The largest difference in lethality occurs at 20 minutes (log<sub>10</sub> difference of 1.2)
- The Base Formulation has an approximate 0.5 log<sub>10</sub> greater reduction in *Salmonella* spp. after 40 minutes of bake time

## **Results - High Fat Formulation**

#### Low Moisture/High Fat

8.0 7.7 7.0 6.0 Counts 5.0 4.3 Log<sub>10</sub> 3.4 3.5 (CFU/g) 4.0 3.0 3.0 2.0 1.0 0.0 30 10 20 40 0 Time (minutes)


**High Fat Formulation** 

| Ingredient          | High Fat |
|---------------------|----------|
| Flour               | 2 cups   |
| Meal (Porcine)      | 1/2 cup  |
| Egg                 | 2 eggs   |
| Chicken Broth       |          |
| Oil                 |          |
| Milk                |          |
| High Fat Shortening | 3/4 cup  |

 Thermal processing for 40 minutes resulted in a 4.7 log<sub>10</sub> reduction in *Salmonella* spp.



## Results - High Fat vs. Base Formulation



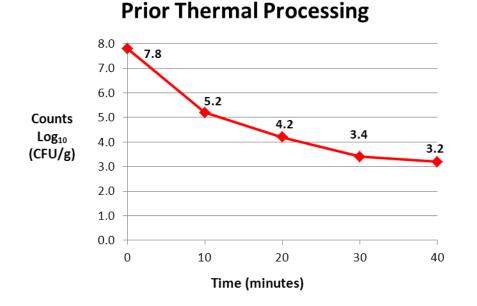
Petfood Forum

| Ingredient          | High Fat | Base    |
|---------------------|----------|---------|
| Flour               | 2 cups   | 2 cups  |
| Meal (Porcine)      | 1/2 cup  | 1/2 cup |
| Egg                 | 2 eggs   | 2 eggs  |
| Chicken Broth       |          | 1/4 cup |
| Oil                 |          | 2 Tbls  |
| Milk                |          | 1/2 cup |
| High Fat Shortening | 3/4 cup  |         |

- The High Fat formulation had higher log<sub>10</sub> reduction earlier in the bake cycle (10 minutes)
- The largest difference in lethality occurs at 30 minutes (log<sub>10</sub> difference of 1.5)
- The Base Formulation has an approximate 1.1 log<sub>10</sub> greater reduction in Salmonella spp. after 40 minutes of bake time

## **Thermal Resistance**

- Raw materials from vendors may have previous thermal processing
- Re-work materials have previous thermal processing
- If previous thermal processes are not sufficient, Salmonella can survive
- Colonies that survive thermal processes are resistant to future thermal processing procedures and may not produce the desired lethality




## **Thermal Resistance Investigation**

- Surviving organisms from the Low Moisture thermal processing experiment were cultivated
- Organisms were re-inoculated into the Low Moisture Formulation
- The new batch was re-processed under the same experimental conditions

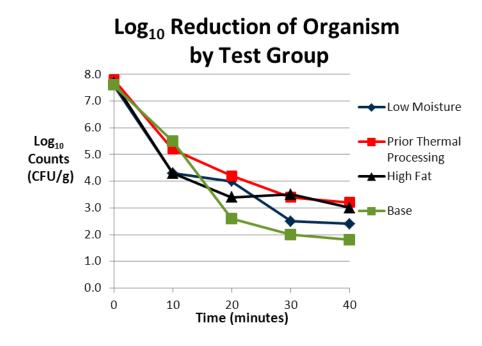


## Results – Thermal Resistance



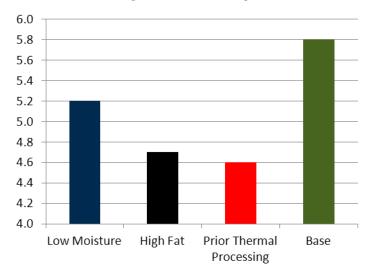
• Thermal processing for 40 minutes resulted in a 4.6 log<sub>10</sub> reduction in *Salmonella* spp.




## Results - Prior Thermal Processing vs. Low Moisture Formulation



- The Prior Thermal Processing test group had a lower log<sub>10</sub> reduction in organism counts throughout the test interval
- The Base Formulation has an approximate 0.8 log<sub>10</sub> greater reduction in Salmonella spp. after 40 minutes of bake time




## Results – All Test Groups



Petfood Forum

#### Final Log<sub>10</sub> Reduction by Test Group



| Ingredient          | Low Moisture | High Fat | Base    |
|---------------------|--------------|----------|---------|
| Flour               | 2 cups       | 2 cups   | 2 cups  |
| Meal (Porcine)      | 1/2 cup      | 1/2 cup  | 1/2 cup |
| Egg                 | 2 eggs       | 2 eggs   | 2 eggs  |
| Chicken Broth       |              |          | 1/4 cup |
| Oil                 | 3/4 cup      |          | 2 Tbls  |
| Milk                |              |          | 1/2 cup |
| High Fat Shortening |              | 3/4 cup  |         |



## Summary

- The Base Formulation had the highest log<sub>10</sub> reduction of Salmonella followed by the Low Moisture Test Group, the High Fat Test Group, and lastly, the Prior Thermal Processing Test Group
- Moisture in pet food formulations is beneficial in reducing Salmonella during thermal processing
- Oils and shortenings have an insulating effect which can protect Salmonella during thermal processing

**Petfood**Industry

• Salmonella survivors in thermally processed matrices can be resistant to subsequent thermal processes



# Summary

- As the results indicate, matrix ingredients can effect the outcome of validation experiments
- When using documentation (publications, vendor material, regulatory guides) to validate Preventative Controls, follow the FSMA proposed regulation by ensuring:
  - "the conditions used by your (manufacturing) facility are consistent with those described in the supporting literature."

- Temperature
- Heating Time
- Ingredient Matrix



## Thanks for Your Time

• Questions?





