

Kay Cooksey Clemson University April 2013

PetfoodIndustry

WAT

Why Antimicrobial Packaging?

- Trend toward fresh pet foods
- Incidents of recalls

Petfood Forum

PetfoodIndustry

WAT

- 12 Recalls involving suspected Salmonella spp.
- Feb 19th to April 3, 2013 (FDA website)
- Antimicrobial Packaging another hurdle
- Questions to ask for implementation
 - Regulatory Status and Liability
 - Economic cost/benefit analysis
 - Technical Challenges

What is Active Packaging?

- Active Packaging
 - change condition/environment in the package to extend shelf life, enhance sensory properties or improve food safety.
 - senses change and changes package properties
- Intelligent Packaging
 - Senses and signals

PetfoodIndustry

WAT

Active Packaging

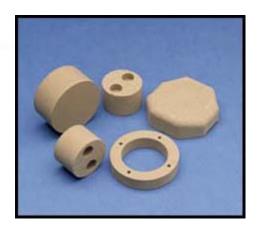
- Purge absorbers
- Moisture absorbers or emitters
- O₂ scavengers/emitters indicators
- CO₂ absorbers/emitters indicators
- Odor absorbers or emitters
- Ethylene absorbers
- Ethanol emitters
- Antimicrobials

PetfoodIndustry

WAT

Petfood

Forum



Active Packaging

Moisture Absorbers

- Packets
- Canisters
- Moldable products

WAT

Oxygen Absorbers/Indicators

Sachets Multisorb Mitsubishi Ageless

Toppan oxygen indicator

PetfoodIndustry

WAT

Oxygen Scavengers

- Oxygen scavenging film
 - Cryovac OS UV light activated
- Bottles
 - Oxbar, Amcor, Darex, Aegis Ox, etc.
 - Caps and liners

WAT

Types of Antimicrobials Studied

Туре	Specific examples/derivatives			
Enzymes	Lyzoyme, Peroxidase			
Chitosan	Derived from Shellfish			
Bacteriocins	Nisin, Pediocin			
Antibiotics	Imazalil			
Organic acids	Benzoic, Sorbic, Ascorbic, Propionic			
Spices	Rosemary, Garlic, Thymol			
Citrus extracts	Grapefruit seed extract, limonene			
Isothiocyanates	Allyl isothiocyanate			
Metals	Silver ions			
Fungicides	Benomyl, Ethanol			
Oxidizers	Ozone, Chlorine dioxide			

PetfoodIndustry

Screening Methods

- First step in formulation
- Performed in microbiological media
- Minimum effective level of antimicrobial agent
- Methods:
 - Spot on lawn
 - Agar diffusion
 - Kirby Bauer method

PetfoodIndustry

WAT

Options for Incorporation into Packaging

- Biopolymer films as carriers of antimicrobial agents.
- Biopolymer films as antimicrobial agents themselves.
- Incorporation of a antimicrobial delivery system for use in existing packaging systems.
- Incorporate into synthetic polymer
- Utilize a multi-system approach.

WAT

Incorporation into Packaging

- Coating
- Compound into polymer resin
- Blend into polymer through mix port in extruder
- Coextrude
- Encapsulation

PetfoodIndustry

W/AT

Incorporation into Packaging

- Considerations
 - Miscibility
 - Viscosity
 - Heat sensitivity
 - Ability to release
 - Drying rates
 - Acidity
 - Converting on commercial equipment
 - Blocking and/or blooming in the roll form
 - Heat sealable
 - Even release of volatile active compounds
 - Effect of antimicrobial on food
 - Effect of food on antimicrobial effectiveness
 - Can material remain effective after storage, prior to use as a package

PetfoodIndustry

W/AT

Screening methods for packaging film

- Methods differ depending upon method of antimicrobial delivery
 - Film on lawn

Petfood Forum

WAT

- Agar overlay
- Shake Flask
- Extraction methods
- Measure over time to determine release
 - Quantitative above methods
- ReffoodIndustry Kinetics models

Antimicrobial Studies Vary

- Systematic approach
 - Level of antimicrobials used
 - Screening methods need to move to packaging applications
- Consistent Methods for Reporting Results
 - Positive/negative
 - % reduction comparison to control
 - Log reduction

PetfoodIndustry

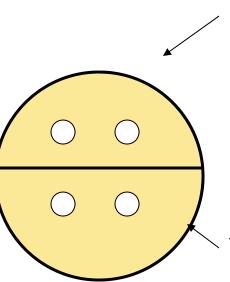
WAT

Antimicrobials Studied

- Nisin
- Nisin Combinations
- Chitosan
- Chitosan Combinations
- Organic acids
- Chlorine dioxide
- Silver lons

- Methylcellulose and Hydroxypropyl methylcellulose coating as a carrier
- LDPE or barrier bags used as substrate
- Tested antimicrobial potential
 - Drop assay

Petfood


PetfoodIndustry

W/ATT

- Diffusion assay
- Direct application of coated film to inoculated plate
- Inoculated hot dogs, individually wrapped in coated film
- Listeria monocytogenes

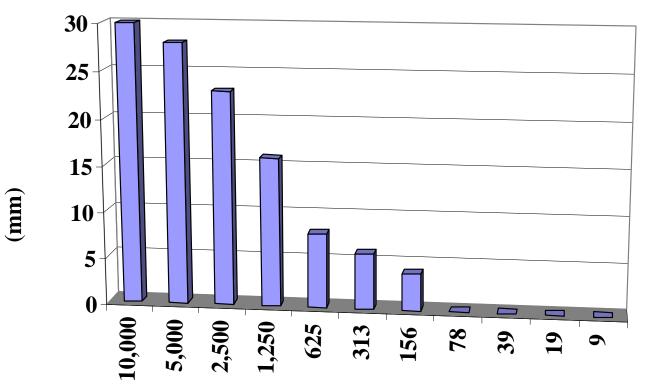
MIC of Nisin

Spot on Lawn Assay

10μL drop taken from tubes containing film samples in buffer solution

buffer solution only

PetfoodIndustry


WAT

Petfood

WAT

MIC of nisin in solution

Nisin Concentration (IU/mL)

Mean Zones of Inhibitior

· •

Film Coating Formulation 875mg Methyl cellulose 375mg Hydroxypropyl methylcellulose 0.75mL Polyethylene glycol (plasticizer) 1.25mL 0.02N Acetic acid 25mL Distilled water 25mL 95% Ethanol Blend with homogenizer

PetfoodIndustry

WAT

Film Production

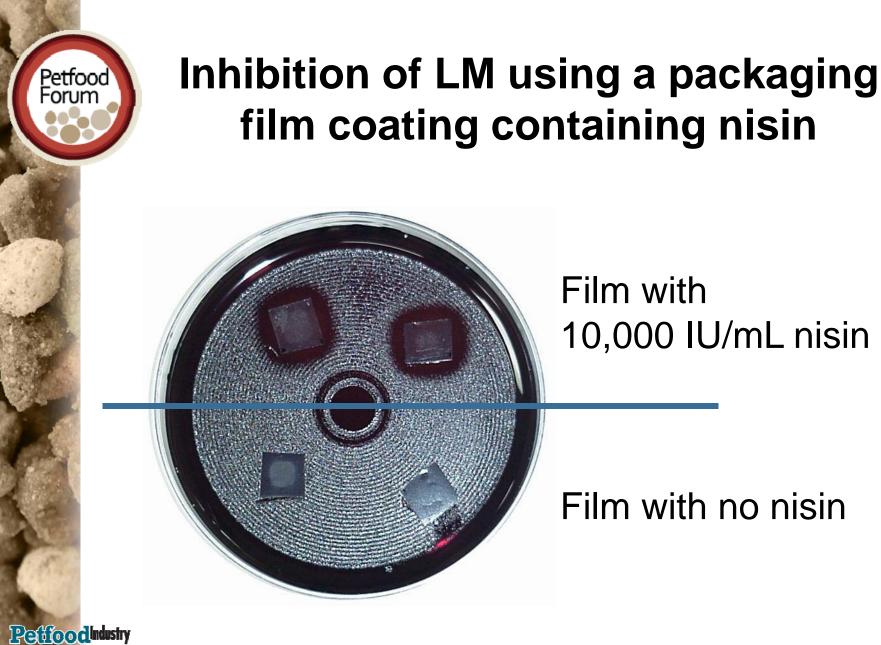
- Thin layer chromatography plate coater.
- Gate set at 500µm thickness.
- Coat onto surface of 8" x 8" glass plates covered with low density polyethylene.
- Dry overnight at room temperature.
- Cut into 1 cm squares, place in plastic bag.
- UV light exposure for 7 mins. each side.

Petfoodindustry

WAT

Petfood

LDPE film coated with cellulose-based coating



No nisin

10,000 IU/g nisin

PetfoodIndustry

WAT

WATT

- Inhibition of LM in Hot Dogs using Nisin Coated Packaging Film
 - Nisin levels tested 10000, 7500, 2500 and 156
 - Coated onto barrier bags, hot dogs individually

vacuum packaged

- 5 strain LM cocktail, 5 log inoculum
- Measured LM populations at days
 - 0, 7, 15, 21 28 and 60

PetfoodIndustry

WAT

Inhibition of LM on the surface of hot dogs enumerated on TSA

Petfood Forum

	Nisin	Days of Storage						
	(IU/mL)	0	7	15	21	28	60	
	0	5.29 ^{a,x}	5.51 ^{a,x}	6.13 ^{a,x}	6.33 ^{a,y}	8.01 ^{a,y}	9.11 ^{a,y}	
X	156.3	4.84 ^{a,x}	4.9 ^{b,x}	4.90 ^{b,x}	5.37 ^{b,y}	7.50 ^{b,y}	9.52 ^{a,y}	
	2500	NDb	ND¢	ND¢	ND¢	ND ^c	ND ^b	
C	7500	NDb	ND ^c	ND ^c	ND¢	ND ^c	ND ^b	
Petfood	In4+0x000	NDb	ND¢	ND¢	ND¢	ND ^c	ND ^b 24	

- Overall summary
 - Effective at 2500 IU/mL or above
 - Diffuses from cellulose coating over time
 - Affects visual and heat sealing properties
 - -2,500 IU/ml ~\$0.29/pouch
 - -7,500 IU/mI ~ \$0.73/pouch

WAT

- Forming stand alone film with nisin using cellulose formulation and compared to coating.
 - More effective when made as a film than as coating
 - Longer release
- Nisin/rosemary blend
 - Rosemary did not have synergistic effect in cellulose-based coating

PetfoodIndustry

WAT

- Nisin or lauric acid with cellulosechitosan film
 - Chitosan blended with cellulose alone, 2 log reduction
 - Chitosan blended with cellulose and lauric acid similar reduction
 - Chitosan blended with cellulose and nisin,
 5 log reduction

PetfoodIndustry

WAT

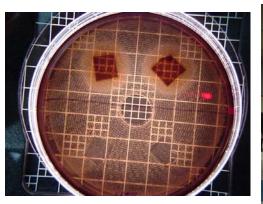
- Current work
 - Compounded with EVA, extruded film, inhibited spoilage bacteria on turkey bologna and cheese.
 - Coating onto paper, using pectin to control release, inhibiting L. monocytogenes.
 - Pattern coating cellulose based nisin blend for application on top web of form/fill/seal process along with spray on bottom forming web.

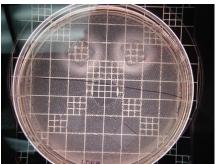
WAT

Chitosan

- Derived from shells of crustacean
- Inexpensive
- Requires corona treatment to coat onto film
- Reduces heat seal strength
- Shows effectiveness in liquid solution
- Minor reduction (2 log) in food
- Synergistic effect with nisin

PetfoodIndustry


WAT

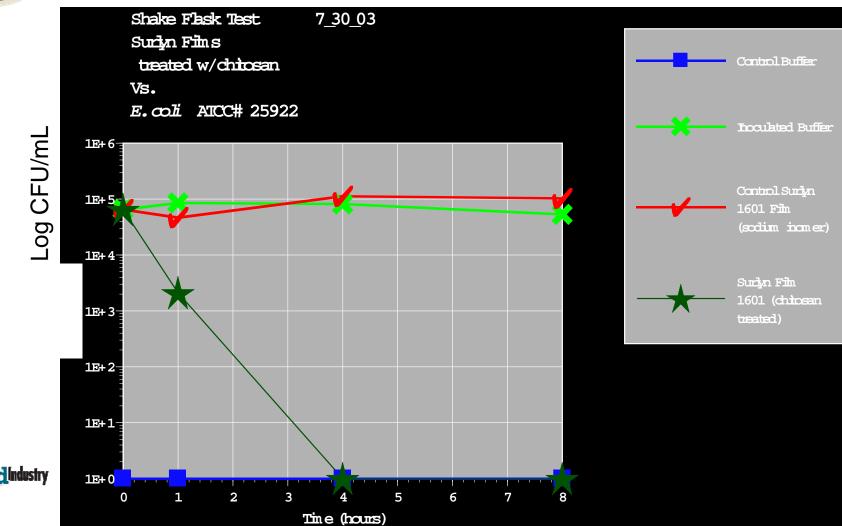

Petfood

Chitosan

Film on Lawn



PetfoodIndustry



Spot on Lawn

Petiood Industry

WATT

Chlorine dioxide

- Volatile compound, oxidizing agent
- Doesn't require direct contact with product
- Extremely effective, biocide not biostatic
- Critical issues:
 - Release rate
 - Volume of package and headspace
 - Moisture content of product
 - Reduce effect of CIO₂ on product
 - Control to prevent oxidative reactions

PetitoodIndustry

WAT

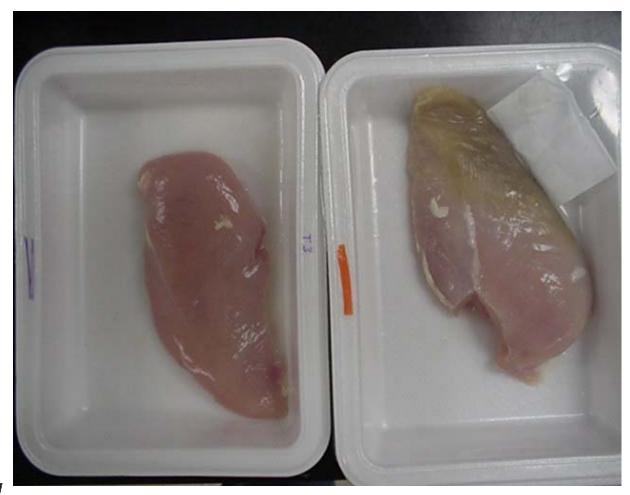
Petfood

Chlorine dioxide

- Fresh chicken breasts inoculated with 4 log population *S. typhimurium* NAR
- Sachets:
 - Fast release (6.6mg, 26 hours) Slow release (2.25mg, 22 days)
- Package atmosphere: 100% N₂ or 75% N₂/25% CO₂
- TSA, TSA w/NA, L.a.b. color and sensory (odor and color) on days 0, 3, 6, 9, 12 and 15 of refrigerated storage.

PetfoodIndustry

WAT



Quality of Chicken using CIO₂ and MAP Packaging

Conclusions

- Total plate counts increased with storage time but those with ClO₂ were 1-1.5 log lower regardless of package atmosphere.
- After 15 days, *S. typhimurium* counts were significantly lower on samples treated with CIO₂ (fast and slow release sachets).

Quality of Chicken using CIO₂ and MAP Packaging

PetfoodIndustry

WAT

Petfood Forum

Chicken breasts after 15 days at 2.8°C

Quality of Chicken using CIO₂ and MAP Packaging Conclusions

- Color was adversely affected but not reflected by instrumental or sensory evaluation due to statistical variability and sample location evaluated.
- Odor was significantly reduced by
 CIO₂ treated samples, a concern with regard to indication of spoilage.

PetfoodIndustry

WAT

Chlorine dioxide

Current work

- New sachets proven to work with bulk shipment of raspberries, blackberries and blueberries
- Tomatoes bulk shipment for foodservice
 - Reduce spoilage during shipment (temperature abuse)
 - Prevent outgrowth of pathogenic bacteria (*E. coli*)

PetfoodIndustry

WAT

Overall Summary

- Antimicrobial packaging can be effective.
- Method of testing effectiveness affects results
- What level of inhibition is "significant"?
- Combination systems show promise.
- Effect on food properties needs to be further studied.
- Focus on testing antimicrobials incorporated into package with food is critical to make progress
- Development of commercial production of antimicrobials packaging materials is our goal at Clemson

PetfoodIndustry

WAT

WAT