

Mycotoxins & Mycotoxicosis

Duarte Diaz Ph.D.

In 1928, Dr. Alexander Fleming, a Scottish microbiologist discovered that a colony of Penicillium mold inhibited the growth of bacteria on a petri dish.

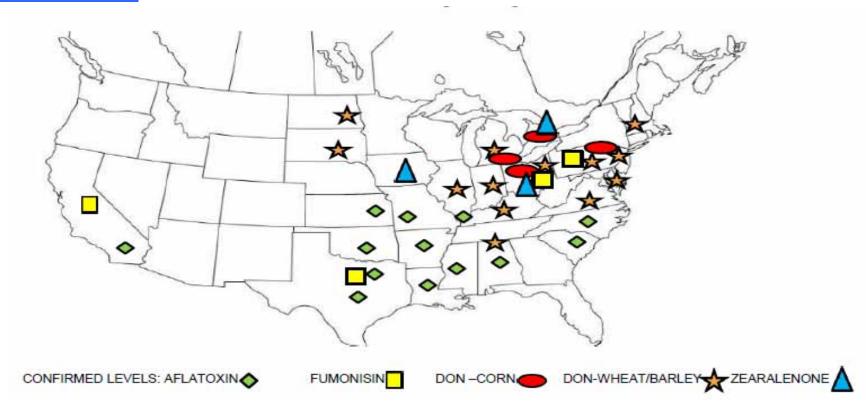
As a result the antibiotic Penicillin was isolated, tested and produced prior to WWII, saving many lives.

Turkey X Disease

AtoZ mycotoxins Toxinogenic moulds could be divided in 4 groups:

- Pathogenic for plants Aw > 0,90

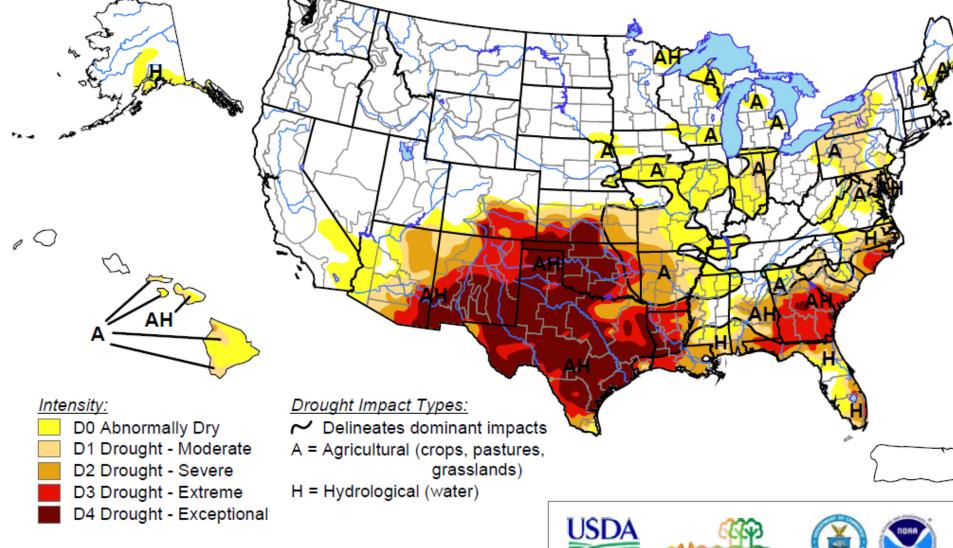
 (i.e. *F. graminareum*, producing **Zearalenone**)
- 2. Moulds growing and producing mycotoxins on old or stressed plants -Aw > 0,90(*F. moniliforme* producing fumonisin and *A. flavus* producing **Aflatoxins**)
- Moulds growing on plants and enhancing mycotoxins contamination during harvest Aw > 0,90
 (i.e. *F. roseum* producing Trichothecens DON, T2, HT2)
- 4. Moulds living in ground and decaying materials which will grow during storage Aw > 0,60
 (i.e. *A. ochraceus* and *P. viridicatum* producing Ochratoxin A).



AtoZ Major Mycotoxins

 Well known Aflatoxin Zearalenone Fumonisins Tricothecenes 	ΜΥCOTOXIN	FOODSTUFF	MOLDS
	Aflatoxin B ₁ , B ₂ , G ₁ , G ₂	Corn, peanuts, pistachios Small grains	Aspergillus flavus, A. parasiticus
	Aflatoxin M_1	Milk and milk products, eggs	
• (DON and T-2 toxin)	Ochratoxin A	wheat, corn, sorghum, coffee, wine, beer, meats	A. ochraceus, A.carbonarius, A. niger, Penicillium verrucosum
Least known	Tricothecenes	Corn, wheat, barley	Fusarium graminearum, F. culmorum,
Fusaric AcidOchratoxin A	Fumonisin	Corn and corn products	F. verticillioides, F. proliferatum

AtoZ mycotoxins

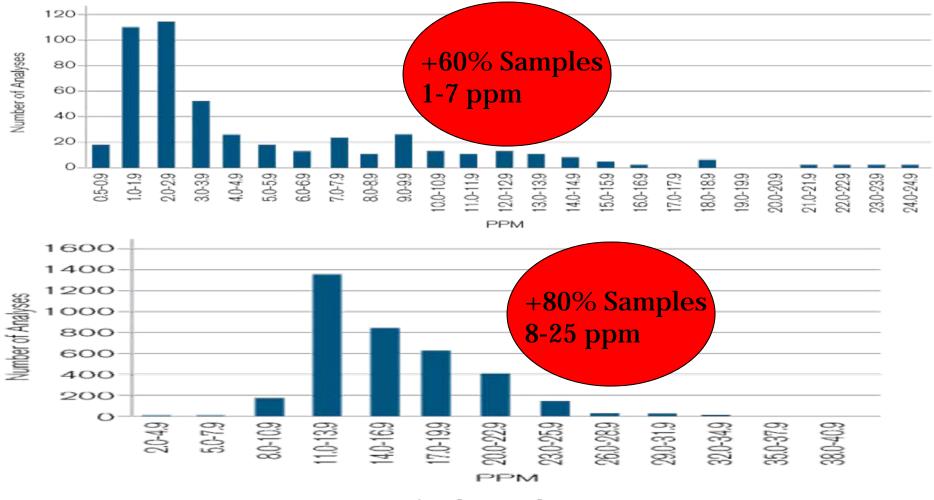

2011 Harvest Mycotoxin Map Report

If you have questions please contact our office and speak with our staff. This report is brought to you by the Pet Food Department at Neogen. Reports are compiled from various sources and are subject to variability. For further details on the map or assistance with on-site mycotoxin monitoring please contact us at (800) 234-5333 or email us at <u>foodsafety@neogen.Com</u> or visit our website at www.Neogen.Com

U.S. Drought Monitor August 2, 2011 Valid 7 a.m. EDT

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://drought.unl.edu/dm

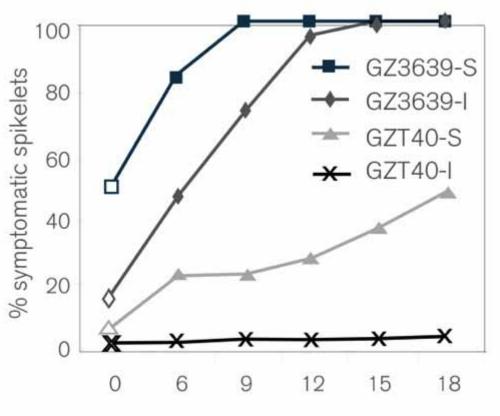

Released Thursday, August 4, 2011 Author: Brad Rippey, U.S. Department of Agriculture

National V Drought Mitigation Cente

2009 Growing Season "A Perfect Storm of Events"

- A wet spring delayed planting in many areas. Cool temperatures and increased rainfall throughout the corn growing regions were noted during the 2009 season.
- Due to the cool conditions crop maturation was extremely slow.
- Corn was harvested at a much higher moisture level than desired. Therefore storage conditions were harder to meet and maintain at less than 14% moisture.
- High levels of DON in corn were found in Western Pennsylvania, Ohio, Indiana and Southern Michigan. In many areas zearalenone was also present.

DON Results in 2009 Ohio/Indiana Corn

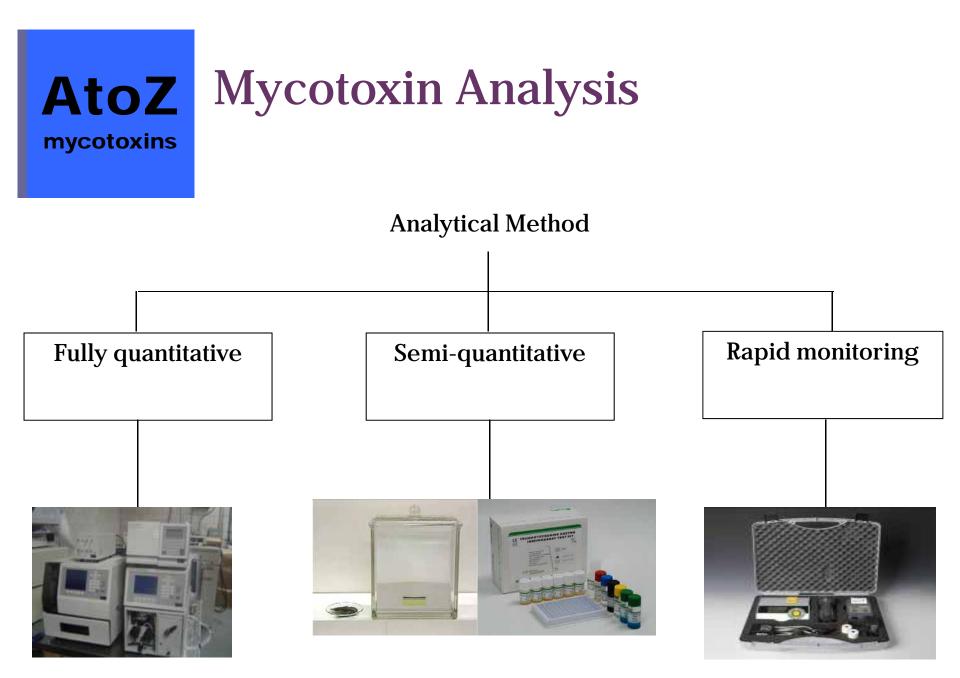

Courtesy of Trilogy Labs

Biological Significance

- Response to stress
- Competitive advantage (ecological)
- Mechanisms for propagation

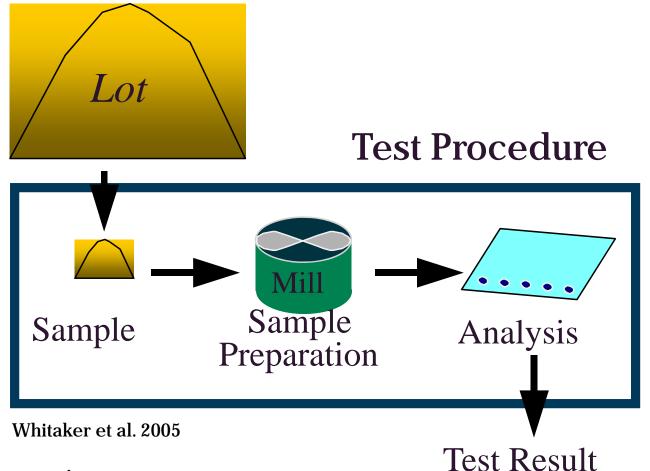
Days after inoculation

Bai et. al Mycopathologia 2001


AtoZ mycotoxins Environmental Factors Affecting Mold Growth

- Suitable Substrate Feed
- pH 4 to 8, depending on mold
- Temperature 5°C to 44°C (40°F to 110°F)
- Moisture > 13%, variable requirements
- Relative humidity > 70%
- Water activity above a_w of 0.75

AtoZ ^{mycotoxins} Why have mycotoxin concerns increased?


Better analytical methods

Mycotoxin Specific Sampling Protocols

AtoZ mycotoxins Error Associated with the Analytical Procedure

The variability measured by the variance associated with a 0.91 kg sample, 50 g subsample, measuring aflatoxin in 1 aliquot of shelled corn at 20 ppb aflatoxin

	Variance	Ratio %
Sample = 0.91 kg	268.1	75.5
Sub S ² , 50g	56.3	15.9
Immunoassay, 1 aliquot	30.4	8.6
Total	354.8	100

Sampling, sample preparation, and analysis errors account for about 75.5, 15.9, and 8.6% of the total error, respectively

Whitekew Wel. at ozmycotoxins.com

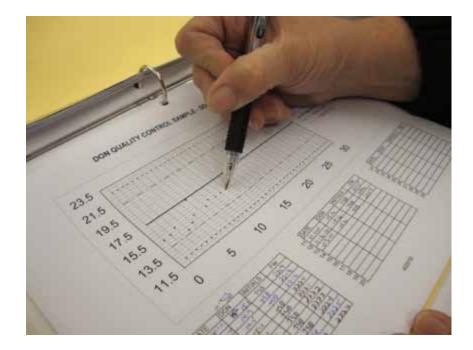
AtoZ Mold and Toxin Distribution

Protein

12	13	12	14
13	13	14	12
15	11	12	12
13	14	11	9
13	12	12	13

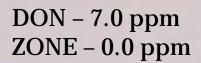
0	0	0	0
0	0	200	0
0	0	0	0
0	0	0	0
0	0	0	0

Aflatoxin


Mean Protein Concentration 13% (USDA)

Mean Aflatoxin Concentration 10ppb (USDA)

Analytical Biases


Reference Materials

Daily Quality Checks Training Proficiency Samples

Sampling biases

DON – 263.2 ppm ZONE – 82.8 ppm DON – 0.0 ppm ZONE – 0.0 ppm

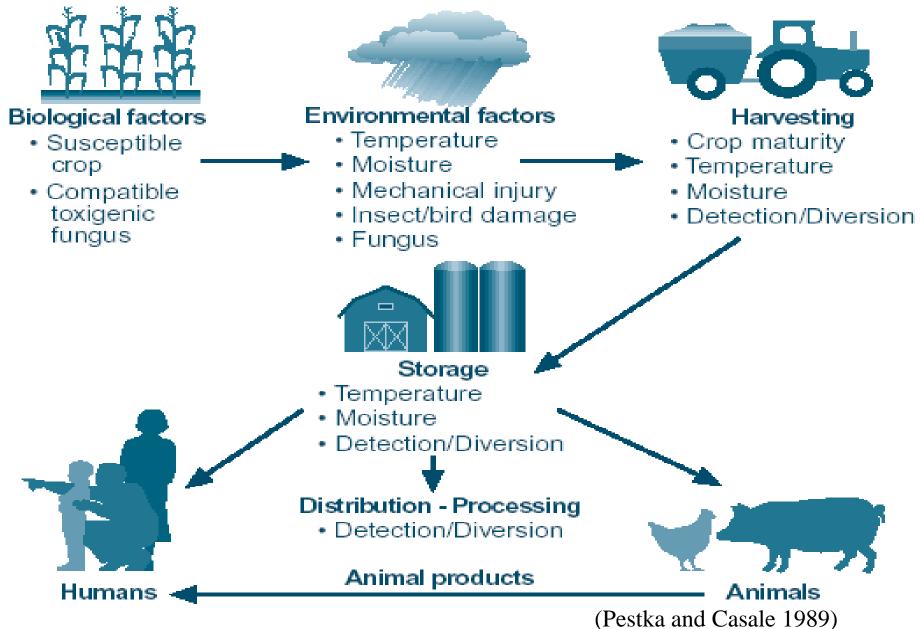
Courtesy of Trilogy labs

DON – 2.1 ppm ZONE – 4.4 ppm

DON – 1.8 ppm ZONE – 0.3 ppm

AtoZ mycotoxins Why have mycotoxin concerns increased?

Better analytical methods


Understanding of their occurrence and effects

Higher production levels (animals)

- More general stress
- Marginal nutrient deficiencies
- Genetic vulnerability
- Animal production changes

Increased incidence in some years

Factors affecting Mycotoxin occurrence in the food chain

AtoZ mycotoxins Strategies to reduce the risk of Mycotoxin Contamination

✓ PREVENTION OF THE MYCOTOXIN FORMATION IN THE FIELD

Good Hygienic Practice Good Agricultural Practice

✓ INPROVEMENT IF THE POST-HARVEST TECHNIQUES

Good Storage Practice Good Manufacturing Practice

DEVELOPMENT OF CP ON ALL POINTS OF PRODUCTION AND PORCESSING

Capable of monitoring the health and promote safe and fare commerce

✓ CHEMICHAL, PHYSICAL OR BIOLOGICAL METHODS TO DETOX/DECON

Losses Associated with their consumption

HACCP - Hazard Analysis and Critical Control Point

- Water is probably the most important factor affecting microorganisms growth
- Water activity (Aw) is the most used measure of the availability of water to microorganisms

• Aw is the ratio of the vapor pressure of the water above the substrate to that of pure water at the same temperature and pressure

AtoZ mycotoxins

3

Water Activity (.

Water Activity Values Affecting the Range of Micro-Organisms Growth

1.00 Represents the Aw of pure water

- **0.90** Moulds responsible for fields mycotoxins production
- 0.60 Minimal Aw for mould growth
- 0.45 Minimal Aw for yeast growth

0 No water available for growth

AtoZ Conclusions

- The unpredictability of the environmental conditions that grains are exposed to make it difficult to predict toxin contamination from year to year
- Improper storage could greatly influence mycotoxin contamination
- Therefore any complete feed management program should always include mycotoxin analysis

Worldwide mycotoxins regulations

Known to have regulations
 No data
 Known to lack regulations

www.atozmycotoxins.com

(FAO 2004)