Advancements in Extrusion Process & Design

Pet Food Forum 2014, Bangkok, Thailand

Objectives of Preconditioning

Your objective is to form a homogenous final product from a mixture of two or more dissimilar raw materials, hydrate to a particular moisture, pre-cook for ease of extrusion and product characteristics, and provide uniform/consistent flow to the extruder.

Types of Preconditioner

Single Shaft Preconditioner

High Speeds

Low Speeds

Single Shaft Preconditioner

When do I use a single shaft preconditioner?

- 1. Low cook required
- 2. Short Retention Times are sufficient
- 3. No liquid/slurry/meat addition involved
- 4. Minimal mixing required

Two Stage Single Shaft Preconditioner

High Speed Shaft

- Mixing
- Liquid Injection
- Meat Injection
- Water & Steam Injection

Low Speed Shaft

- Retention for Absorption
- Water & Steam Injection
- Cook

Double Shaft Preconditioner Differential Diameter Cylinder (DDC)

Smaller, high speed shaft (100-500 RPM)

> Counter-rotating, intermeshing shafts.

Bi-Directional

- Clean-out

Larger, slow speed shaft (50 – 250 RPM)

Double Shaft Preconditioner ETI Asceptic Dual Preconditioner (ADP)

Identically sized, counterrotating, intermeshing shafts.

Variable speed

Retention Time

Bi-Directional

Clean-out

Double Shaft Preconditioner

When do I use a double shaft preconditioner?

- 1. Higher levels of cook required
- 2. Longer retention times required
- 3. Liquid/slurry/meat addition involved
- 4. Intense, Distributive Mixing is required

Preconditioner Mixing Components

Attachment Mechanisms

- Welded
 - No Adjustment
- Bolted
 - Minor Adjustment
- Threaded
 - Excellent Adjustment

Preconditioner Mixing Components

<u>Paddles</u> Thin narrow blade Excellent mixing action

<u>Beaters</u> Thin wide blade Good mixing promotes build-up **T-Beaters**

Thin narrow blade w/ perpendicular appendage.

Erratic mixing action

Preconditioner Mixing Setup

Preconditioner Level Management

Preconditioner Level Management In-Line Dynamic Mixing

All Forward Pitch

- Retention Time: 20 35 Seconds
- Dead Stop Weight 50 60 lbs.

• Shaft Rotation has significant impact

Preconditioner Level Management Traditional Configuration

- Retention Time: 35 55 Seconds
- Dead Stop Weight: 60 85 lbs.

• CAN NOT operate shafts in Reverse

Preconditioner Level Management Traditional Configuration

- Retention Time: 45 65 Seconds
- Dead Stop Weight: 70 95 lbs.

• CAN NOT operate shafts in Reverse

Neutral Pitch

Reverse Pitch

- Retention Time: 50 90 Seconds
- Dead Stop Weight: 120 170 lbs.
- Evacuation Time & Weight Greatly Improved
 - Traditional 2 Minutes w/ 30 lbs.
 - Advanced <40 seconds w/ <11bs.
 - Increased Speed & Reverse Direction

Neutral Pitch

Reverse Pitch

- Retention Time: 80 120 Seconds
- Dead Stop Weight: 160 232 lbs.

- Evacuation Time & Weight Greatly Improved
 - Traditional 2 Minutes w/ 30 lbs.
 - Advanced <25 seconds w/ <1lbs.
 - Increased Speed & Reverse Direction

Any and all injections will affect fill quality

Without any injections, expect only 40–50% fill

Addition of 8% water, fill quality can increase to 80%

Addition of steam (3-5%), fill quality can increase to 90%

Motor Load

- Reduction as high as 50%

Evacuation Time

- Traditional configuration reaches maximum clean-out in 2 minutes
- Advanced configuration reaches maximum clean-out in 25 seconds

• Evacuation Weight

- Traditional configuration > 30 lbs
- Advanced configuration < 2 lbs

Preconditioner Level Management Cross-Section Profile

Preconditioner Operation Management Independent Process Variables

Preconditioner Operation Management Dependent Process Variables

Preconditioner Operation Management Dependent Process Variables

- Moisture Content
 - Water, Steam, Dry Feed, Additives
- Temperature
 - Water, Steam, Dry Feed, Additives
- Average Retention Time
 - Rate, Configuration, Speed
- Retention Time Distribution
 - Rate, Configuration, Speed
- Degree of Mixing
 - Rate, Configuration, Speed

Preconditioner Operation Management Critical Control Point Parameters

- Moisture Content
- Thermal Energy Input
- Retention Time

Preconditioner Operation Management Water Absorption

Preconditioner Operation Management Thermal Energy Transfer

Preconditioner Operation Management Average Retention Time

Preconditioner Operation Management Average Retention Time

Operate preconditioner at steady state for some time, then measure or calculate the total flow rate.

Preconditioner Operation Management Average Retention Time

Dead stop all preconditioner functions, then empty and measure the material retained in the preconditioner.

Preconditioner Operation Management Calculating Retention Time

Density X Fill Factor X Volume Feed Rate

Preconditioner Operation Management Factors of Retention Time

Preconditioner Operation Management Factors of Retention Time

Preconditioner Operation Management Factors of Retention Time

Preconditioner Operation Management Residence Time Distribution (RTD)

A measure of the retention time uniformity among the raw material particles as a whole.

FIFO – First In, First Out

The product that enters the preconditioner first, will be the first product out the discharge.

Defined and controlled by the mechanical setup of the hardware, except in cases where shaft speeds are controlled independent of each other.

Proper FIFO Action

Bin / Feeder

2	20	Seconds of	20	Seconds of	20	Seconds of
		Retention		Retention		Retention
1						
		Sample #6		Sample #3		Sample #1

Preconditioner

Improper FIFO Action

Bin / Feeder

2 0	Seconds of	20	Seconds of	80	Seconds of
	Retention		Retention		Retention
	Sample #5		Sample #3		Sample #1

Preconditioner

Preconditioner Operation Management Residence Time Distribution

Operate preconditioner at steady state for some time.

Preconditioner Operation Management Residence Time Distribution

At time zero, add a tracer and start collecting samples at specific intervals of time.

Preconditioner Operation Management Residence Time Distribution

Collect samples for 2-3 times the expected average retention time to make sure a good data set is recorded.

Preconditioner Operation Management Residence Time Distribution Curve

Preconditioner Operation Management Effect of Wall Clearance on RTD

Preconditioner Operation Management Effect of Capacity on RTD

Preconditioner Operation Management Effect of Speed on RTD

- Reduced speeds decrease mixing intensity
- Reduced speeds will broaden the Residence Time Distribution (RTD) curves.

Note: Reduced speeds will increase Average Retention Time.

Preconditioner Operation Management Effect of Speed on RTD

Performance and Efficiency Factors

- Ingredient size, shape, and density
- Sequence and ratio of ingredient additions
- Preconditioner fill level
- Preconditioner design
- Beater design and contacts/time (speed)
- Retention time and residence time distribution
- Mixing energy (power and duration)
- Component wear
- Feed Rate

Measuring Performance

Mean (Average)

The expected result of any one particular sample.

Sum of all the data points, divided by the number of data points

Standard Deviation

The measure of the spread in a set of data points How widely spread are the values from the Mean Coefficient of Variance

The degree to which a set of data points varies How close are the data points to one another

Benefits of Proper Preconditioning

- Higher level of gelatinization (cook)
- Destruction of Pathogens / Growth Inhibitors
- Improved moisture penetration
- Improved heat transfer
- Improved mixing of solid-liquid ingredients
- Decreased extruder friction/wear
- Higher extruder capacities
- Lower extruder loads
- Improved digestibility / palatability of product

Effect of Preconditioning on Microbial Populations

Microbe	Raw Recipe	Post Preconditioning
TPC (CFU/g)	240,000	9,300
Coliform	22,600	<10
Mold count	54,540	<10
Clostridium	16,000	<10
Listeria	Positive	Negative
Salmonella	Negative	Negative

Effect of Preconditioning on Microbial Populations

Preconditioning and Extruder Wear Cost

System	Wear Cost (\$/Ton)	Screw Life (Hours)
w/o Preconditioning	0.9358	3,000
w/ Preconditioning	0.4319	6,500

AT 11 TONS/HR ---- \$40,000 (USD) PER YEAR SAVINGS

Туре		Actual Free Volume (m ³)	Silhouette Size (m ³)	Access Doors	RTC
Dual Stage		1.0	8.0	2	No
DDC/HIP	00	1.3	6.4	6	Yes
ADP	00	1.52	7.0	2	Yes
SCC	•	.5	7.0	2	Yes
<mark>H</mark> TRU-TECH, I <mark>NC.</mark> —					

Туре		Mixing Intensity Hits/120 sec	Product Build-Up	Mixing Design
Dual Stage	•	14,784	Excessive	Single Shaft
DDC/HIP	00	36,000	Negligible	2 Diff. Speed/Diameter Inter-meshing Shafts
ADP	00	35K – 57K	Negligible	2 Var. Speed Inter-meshing Shafts
	•	17K – 28K	Negligible	Single Var. Speed Shaft

Туре	Pros	Cons
Dual Stage	High RetentionSimple Design	 Higher Cost Poor Mixing Sanitation Higher Maintenance
DDC/HIP	•Good Mixing •Good Retention •High Capacity	 Highest Cost Highest Maintenance Complex Design
DCC	Low Maintenance •Good Mixing •Good Retention •High Capacity •Simple Design	•Medium Cost
SCC	•Lower Cost •Lower Maintenance •Simple Design	 Short Retention Times Low Mixing
HTRU-TECH, INC.		

Туре		Specifications
Dual Stage		 •Up to 5 minutes retention •Up to 4% fat •Limited levels of fresh meat
DDC/HIP	00	 •1.5 – 3 minutes retention •Up to 20% fat •Up to 40% fresh meat
DCC	00	 •1 - 2.5 minutes retention •Up to 16% fat •Up to 20% fresh meat
SCC	0	•30 seconds retention time •Up to 4 % fat •Limited levels of fresh meat

System Energy Analysis

Questions?

