Evaluation of novel ingredients for kidney and feline lower urinary tract disease (FLUTD): new findings

Karen Wedekind

Stratum Nutrition, a Novus International Business

PetfoodIndustry

W/AT

Kidney disease & FLUTD:

- Kidney disease is a common cause of death in both dogs and cats & frequency increases with age
- Based on cat owner surveys, kidney disease and FLUTD (43%) were the most common feline health concerns identified by cat owners
- Both diseases have similar risk factors

PetfoodIndustry

WAT

Stages of chronic kidney disease (CKD) & goals of nutritional management

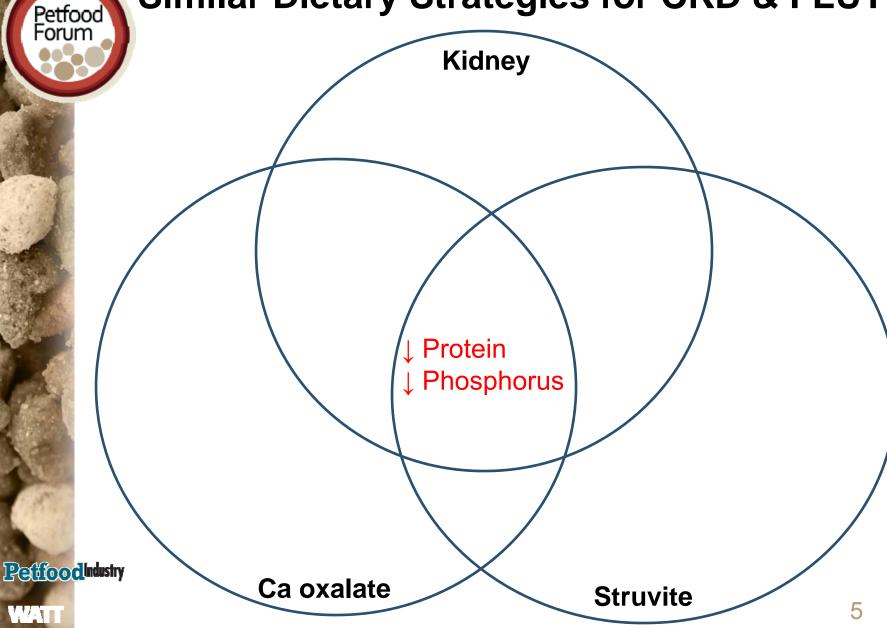
Serum creatinine*	Comments	
<1.6 mg/dL	Non-azotemic	
1.6-2.8	Mild azotemia	
2.9-5.0	Clinical signs present	
>5.0	Multiple clinical signs	
	creatinine* <1.6 mg/dL 1.6-2.8 2.9-5.0	

- 1) Control signs of uremia
- 2) ↓ disturbances of fluid, electrolytes & acidbase balance
- 3) Support adequate nutrition
- 4) Slow progression

W/ATT

Nutritional mgt of CKD & FLUTD:

- Kidney/renal
 - Decrease protein, phosphorus (P), sodium (Na)
 - Increase n3 fatty acids, potassium (K)
- Struvite (magnesium ammonium phosphate)
 - Decrease protein, P, magnesium (Mg)
 - Target urine pH (6.0-6.4)
- Calcium oxalate
 - Decrease calcium (Ca), P & oxalate
 - Target urine pH (>6.2)


PetfoodIndustry

W/AT

Petfood Forum

Decrease animal protein (↑ kidney stones risk 250%*)
 *Robertson et al. 1979; Curhan et al. 1996

Similar Dietary Strategies for CKD & FLUTD

Importance of a balanced diet & avoidance of nutrient excess

- Protein quality (Ideal amino acid (AA) profile) may be as important as protein quantity
- Lysine to energy ratio (mg Lys/100 kcal) & adequate calories also important
- Ash content (P, Ca, Mg, etc.) is generally correlated to protein content
- Protein source is also important
- P bioavailability is generally lower in vegetable
 protein vs animal protein

6

PetfoodIndustry

W/ATT

The "ideal protein" concept

Each species has specific needs for essential amino acid supply These needs can be expressed as ideal amino acid ratios

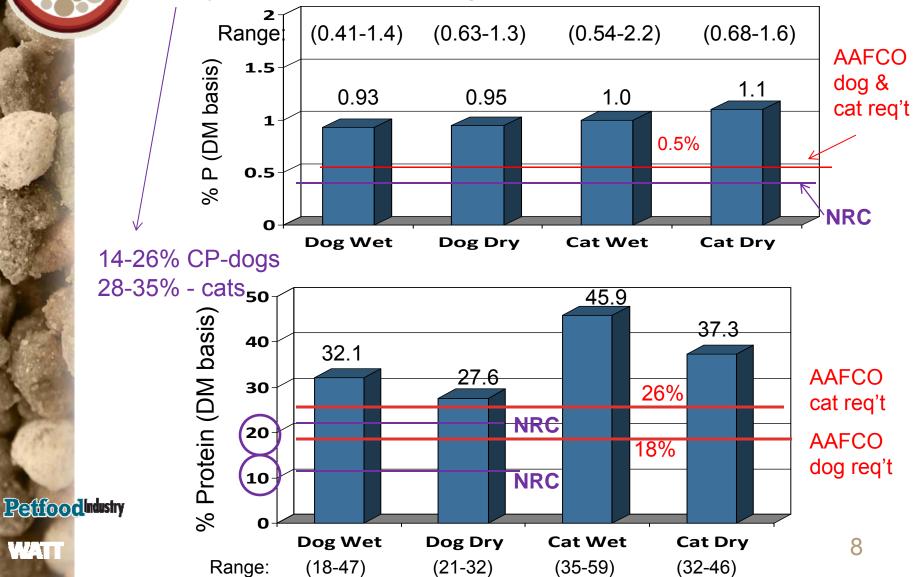
- Relative to the AA that is <u>typically</u> most-limiting
- Lysine for most mammals

This approach published for cat, dog, pig, and chicken by Baker and Czarnecki-Maulden (1991)

Annu. Rev. Nutr. 1991. 11:239-253

PetfoodIndustry

WAT


AA	Cat	Dog
Lys	100	100
Met+Cys	100	64
Trp	19	22
Thr	87	67
Arg	112	71
lle	63	57
Val	75	75
His	38	29

Phosphorus & Protein Levels in Petfoods

Kidney diet recommended ranges: .3-.5% P

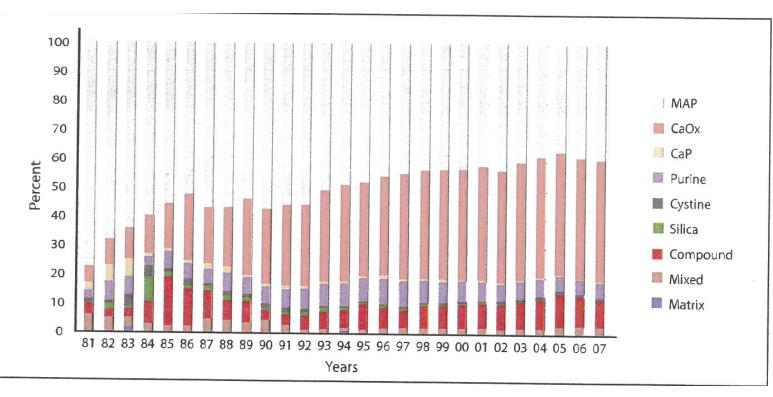
Petfood Forum

WAT

Comparison of National Kidney Foundation guidelines for maintenance dialysis patients

- 1.2-1.3 g protein/kg BW/d (≈ 13% CP for people)
- 70-90 g/d protein (60 kg BW)
- 4.64 g protein/kg BW^{.67}
- 19-23% CP (5 kg cat), similar to NRC minimum recommendation for CP (20%) for adult cats
- 1000 mg/d P equates to 0.19% P
- 2.5 g protein/kg BW/d (no UL DRI for humans) (above is guideline for body-builder ≈ 26-33% CP)

PetfoodIndustry


WAT

Petfood Forum

AAFCO (cat)

Increased occurrence of Ca oxalate stones in dogs

Petfood Forum

Similar pattern observed in people and cats (↑ CaOx stones)

•Inverse Ca:P ratio in people; high inorganic P intake PetfoodIndustry from preservatives and additives found in processed foods & beverages

Phosphorus to Protein Ratio & P Digestibility in Petfood Ingredients

Petfood Forum	Ingredients	Protein (%)	P (%)	P-digest.* (%)	P-to- Protein ratio (%)
	Animal protein				
	Fishmeal	63.3	2.93	82	4.6
	PBM	64.9	2.51	53	3.9
	Poultry meal	64.7	1.94	62	3.0
	Egg, spr. dr.	51.0	0.69	55	1.35
	Egg, whole-fresh	12.2	0.18		1.5
	Egg, yolk-fresh	16.5	0.51		3.1
	Egg, white-fresh	10.3	0.01		0.10
	Vegetable protein				
	SBM-48%	47.7	0.71	48	1.5
	Soy conc65%	65.2	0.82	48	1.3
	Soy isolate-85%	84.8	0.75	48	0.9
Cod Industry	Corn gluten meal	58.3	0.49	47	0.8
MATT .					

*Data from 2012 Swine NRC- total tract P digestibility

WATT

Kalantar-Zadeh et al. 2010

Evidence in cats that vegetable protein diets have renal-protective effects:

Animal protein iodine concentrations approximately 10-fold higher than vegetable protein
26 wk AAFCO maintenance trials with 8 healthy cats:

High vegetable protein catfood lowers serum creatinine*

Diet	Description	Initial	Wk 26	Chg
Α	34% protein; 97% veg. protein	1.53	1.14	25% ↓
В	34% protein; 85% veg. protein	1.46	1.10	25% ↓

*Normal reference range = 0.8-1.8 mg/dL

 In clinical trial evaluating efficacy of y/d prototype, observed 20% decrease in creatinine in hyperthyroid cats; many of these cats had concurrent renal/kidney disease

PetfoodIndustry

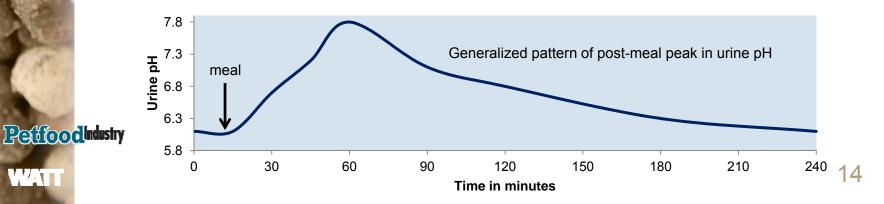
W/ATT

FLUTD- Feline Lower Urinary Tract Disease

- According to VPI Pet Insurance (USA), FLUTD is the most common reason pet owners filed a claim for their cat.
- Two most predominant uroliths or stones in cat urine are struvite (49%) & calcium oxalate (39%).
- Decreasing urine pH is the most reliable means of decreasing risk for struvite (< 6.5); for calcium oxalate, target pH is >6.2.

PetfoodIndustry

WAT


Urine pH fluctuates over time

Normal healthy urine pH (fasted condition) ranges from 6 - 6.4

Petfood Forum

W/AT

- Changes are driven by eating. A meal induces a spike in pH
 - Eating makes the stomach release acid internally
 - The "left over" alkaline ions are released into the blood ____
 - To maintain body pH, the alkaline ions are released in urine, increasing pH

Risk factors for FLUTD in cats

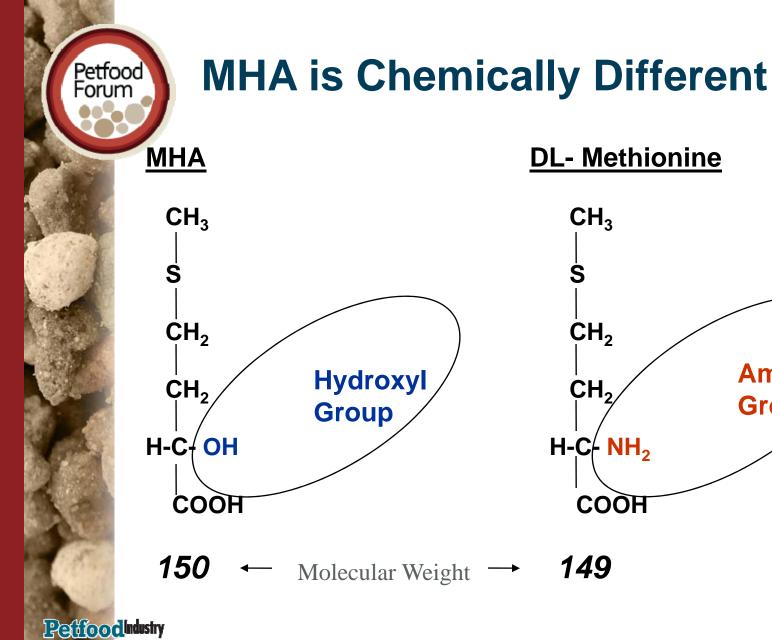
1. Urine pH

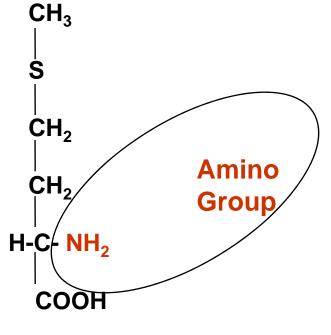
Petfood

W/AT

- High pH (>6.4) allows for clumping of struvite to occur
- Low pH (<6.0) allows for clumping of calcium oxalate to occur
- 2. Urine concentration (measured as specific gravity)
- This is a measure of how much mineral the urine contains
- Urine with no mineral will have specific gravity close to 1.000 g/ml
- High specific gravity is a risk because it promotes clumping
- 3. Residence time in the bladder
- The longer urine remains in the bladder, the more opportunity the minerals have to find each other and clump

Residence time is usually increased in the fasted (non-fed) state


- Of the risk factors for urinary tract disease, the ones we can control the best nutritionally are
 - pH
 - Specific gravity
- Methionine has been traditionally used as a urine acidifier
 - DL-methionine (DLM)
 - DL-methionine hydroxy analog (MHA)
- Key difference between DLM and MHA
 - MHA does not contain nitrogen


PetfoodIndustry

W/AT

Petfood Forum

> Does not increase nitrogen load on the kidney – chronic high nitrogen loads are detrimental to health

WAT

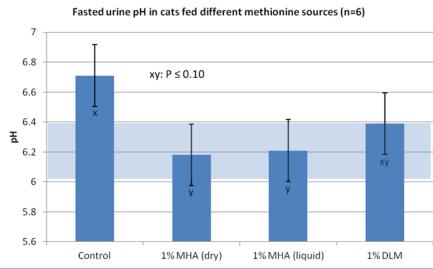
Key outcomes to look for in urine acidification

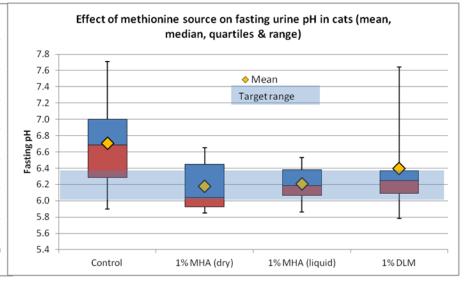
- Fasted (non-fed) urine pH, because
- This state has a large contribution of the risk factor we cannot control (residence time)
- Therefore we need to control the other risk factors as well as possible
- Fasted urine specific gravity, because
- Again the contribution of residence time is significant
- Lower specific gravity is beneficial
- What about fed state parameters?
- They matter, too, but not as important as the non-fed parameters

_____ In the fed state, residence time is usually much shorter

Feline urine pH experiment

- Dietary treatments
 - 1. Control diet (feline mtc food w/ chicken, corn, CGM, BR)
 - 2. As 1 + 1.0% methionine hydroxy analog (dry granule)
 - 3. As 1 + 1.0% MHA (liquid)
 - 4. As 1 + 1.0% DL-methionine (DLM)
- Animals
 - 24 cats (n=6 per treatment)
 - Randomly assigned
- Experimental
 - 14-day feeding
 - Fasting urine pH and specific gravity on day 7
 - Post-meal urine pH and specific gravity on day 14


PetfoodIndustry


WAT

WAT

Methionine source matters when controlling fasted urine pH

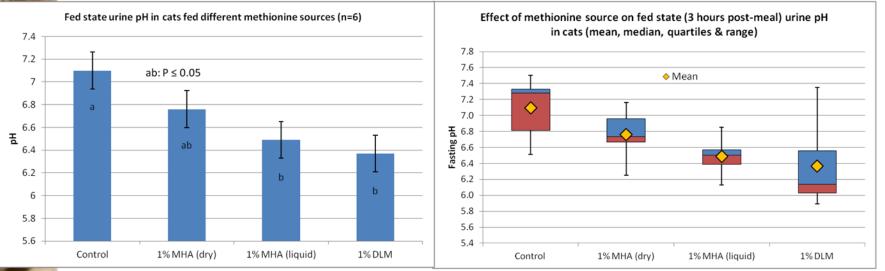
•MHA (liquid & dry) result in pH in the middle of the ideal range

-DLM not different from control -Control is outside target range

•MHA (liquid & dry) result in much tighter pH range

-pH control is better for the entire population compared to DLM -DLM range is similar to control

Methionine addition helps with post meal urine pH


- Post meal data illustrate methionine helps
- Post meal data more difficult to interpret
 - Meal size

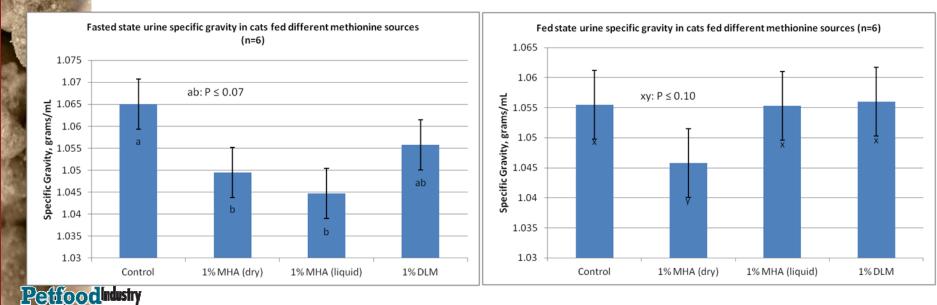
Petfood Forum

W/AT

- Variability in digestion speed
- pH recovery (where are we on the curve?)

- Post meal data still show tighter pH control with analog sources compared with DLM
 - More narrow ranges is more likely to benefit the overall population

Analog methionine sources have a positive effect on urine specific gravity


 Positive effect on specific gravity most evident in fasted state

Petfood

Forum

WAT

• DLM not different from control (fed or fasted)

Summary

- Methionine helps control urine pH and urine specific gravity
 - Analog sources appear more efficacious than DLM
- Effects primarily seen where it matters, in the non-fed state
- Analog sources do not contain nitrogen, reducing excess nitrogen load on the kidney
- Analog sources are usually more economical than DLM

WAT

Petfood Forum Summary:

- Over a dozen studies (humans & rats) have demonstrated renal-protective effects of vegetable protein (soy) & some evidence in cats supports this finding
- Egg products (whole or white) would have dual benefits in renal health: high protein quality and low P content
- Decreasing protein and minerals (P, Mg, Ca) has beneficial effects for both renal disease and FLUTD

PetfoodIndustry

WAT

Summary

 MHA (liquid and dry) was more effective than DLM in reducing urine specific gravity & pH and may offer other benefits to dogs and cats (e.g., anti-microbial, less toxic, lower N-load)

WAT

Thank You

Karen Wedekind, Ph.D. Stratum, a Novus International Business 20 Research Park Dr. St. Charles, MO 63376 Ph: 636-926-7442 Email: karen.wedekind@novusint.com

WAT