

MFiber M33 Product Data Sheet

MFiber is floured Miscanthus, a perennial warm-season plant that is harvested in Missouri. **MFiber** is a non-GMO, non-grain product made with all-natural materials and light manufacturing methods that ensure production has a minimal carbon footprint. M33 is pelleted miscanthus that has been reground.

Approximate Nutritional Data

Moisture	<10%
Protein	<3%
Fat	<2%
Ash	<3%
Prebiotic XOS	13.5% *

Typical Analysis

Screen size	Weight (g)	Percent
20 mesh screen	1.03	4.12%
30 mesh screen	2.79	11.16%
50 mesh screen	7.09	28.36%
100 mesh screen	7.71	30.84%
270 mesh screen	4.41	17.64%
Pan	0.71	2.84%
Bulk Density	25 lb/ft ³	

Origin: Purposefully grown and manufactured in the USA.

Traceability: MFiber is 100% traceable

Packaging: Food grade totes on #1 pallets, Bulk

Storage: Store in a cool dry place, if stored correctly, **MFiber** has a shelf life of 365 days after date of manufacture.

AAFCO Definition: 60.11 Ground Miscanthus Grass, Ground Grass, Sun-cured Ground Grass, Sun-cured Ground Miscanthus Grass

Features and Benefits: MFiber is an all-natural, non-grain, non-GMO carrier. **MFiber** has no added colors, no artificial flavors, no preservatives and a natural aroma. **MFiber** is produced with Sustainability as top priority with a negative carbon footprint.

Note: Organic options available upon request.

*Ming-Hsu Chen, Michael J. Bowman, Bruce S. Dien, Kent D. Rausch, M.E. Tumbleson, Virjay Singh. Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): kinetics, characterization and recovery. *BioResource Technology*. Volume 155, (359-365), (2014)

